Abstract
In recent years, there has been a growing interest in the design and synthesis of chromophores, which absorb in a wide region of the visible spectrum, as these constitute promising candidates for use as sensitizers in various solar energy conversion schemes. In this work, a palladium-catalyzed coupling reaction was employed in the synthesis of molecular triads in which two porphyrin or boron dipyrrin (BDP) chromophores are linked to the meso positions of a central Zn porphyrin (PZn) ring via an amino group. In the resulting conjugates, which strongly absorb over most of the visible region, the electronic properties of the constituent chromophores are largely retained while detailed emission experiments reveal the energy transfer pathways that occur in each triad.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.