Abstract
Photodynamic inactivation of microorganisms known as antibacterial photodynamic therapy (APDT) is one of the most promising and innovative approaches for the destruction of pathogenic microorganisms. Among the photosensitizers (PSs), compounds based on cationic porphyrins/metalloporphyrins are most successfully used to inactivate microorganisms. Series of meso-substituted cationic pyridylporphyrins and metalloporphyrins with various peripheral groups in the third and fourth positions of the pyrrole ring have been synthesized in Armenia. The aim of this work was to determine and test the most effective cationic porphyrins and metalloporphyrins with high photoactivity against Gram negative and Gram positive microorganisms. It was shown that the synthesized cationic pyridylporphyrins/metalloporphyrins exhibit a high degree of phototoxicity towards both types of bacteria, including the methicillin-resistant S. aureus strain. Zinc complexes of porphyrins are more phototoxic than metal-free porphyrin analogs. The effectiveness of these Zn–metalloporphyrins on bacteria is consistent with the level of singlet oxygen generation. It was found that the high antibacterial activity of the studied cationic porphyrins/metalloporphyrins depends on four factors: the presence in the porphyrin macrocycle of a positive charge (+4), a central metal atom (Zn[Formula: see text] and hydrophobic peripheral functional groups as well as high values of quantum yields of singlet oxygen. The results indicate that meso-substituted cationic pyridylporphyrins/metalloporphyrins can find wider application in photoinactivation of bacteria than anionic or neutral PSs usually used in APDT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.