Abstract
AbstractA unique strategy of mesoscopic functionalization starting from silk fibroin (SF) materials to the fabrication of meso flexible SF electronic skin (e‐skin) is presented. Notably, SF materials of novel and enhanced properties of the materials can be achieved by mesoscopically reconstructing the hierarchical structures of SF materials, based on rerouting the refolding process of SF molecules by meso‐nucleation templating. Mesoscopic hybridization/reconstruction endows cocoon silk with a robust mechanical and electric performance by incorporating wool keratin (WK) and carbon nanotubes (CNTs) into the mesostructures of SF via intermolecular templated nucleation. Furthermore, the asymmetrical meso‐functional films with biocompatibility and insulation on one side and conductivity on the other (square resistance = 130 Ω sq−1) endow the passive wireless e‐skin exhibited a tunable sensitivity from −1.05 to −6.35 kPa−1 with a lossless measurement range of ≈2 kPa. The pulses of human subjects are monitored using the e‐skin to evaluate blood vessel hardening and real‐time dynamic systolic and diastolic blood pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.