Abstract

In this letter, a low-power and ultrafast spin neuron for mimicking biological neurons based on magneto-electric spin-orbit (MESO) neurons is presented. First, the physical model of a MESO neuron based on the Landau–Lifshitz–Gilbert (LLG) equation at room temperature is built for investigating the characteristics. By utilizing these characteristics of the MESO device, a current pulse is used to induce the stochastic switching behaviors. We successfully mimic the behavior of the biological neuron with single activation time down to 0.8 ns. Second, using model-derived device parameters, we further simulate a three-layer fully connected neural network using MESO neurons. Using the Mixed National Institute of Standards and Technology database handwritten pattern dataset, our system achieves a recognition accuracy of 98%. In addition, the influence of pulsewidth and amplitude on activation functions of MESO neurons is researched using HSPICE tools. The results show that as pulsewidth and amplitude are increasing, the power consumption and computing time increase while the energy consumption decreases. Specifically, the power consumption performance of a MESO neuron is about 10 µW and improved approximately three orders of magnitude compared to a 45 nm CMOS neuron.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call