Abstract

Introducing steel fibers into traditional concrete can improve its mechanical properties and crack resistance, but few studies have considered how the steel fiber shape and the bond-slip effect between fibers and matrix affect the mechanical behavior of concrete. This paper establishes a three-dimensional representative volume element (3D RVE) of steel fiber-reinforced concrete (SFRC) with random distribution, different shapes, and different interfacial strengths of steel fibers using Python, Abaqus and Hypermesh. Uniaxial tensile behaviors and failure modes of the SFRC are systematically simulated and analyzed. The results show that when the interfacial strength of steel fiber/concrete is changed from 1 to 3 MPa, the tensile strength of the SFRC increases accordingly. When the interfacial strength is greater than 3 MPa, it has no effect on tensile strength. Additionally, if the interfacial strength is 1 MPa, the tensile strength of the SFRC with end-hook steel fibers is increased by 7% when compared to the SFRC with straight steel fibers, whereas if the interfacial strength reaches 2.64 MPa (strength of pure concrete), the fiber shape has little effect on the tensile strength of the SFRC. Moreover, the simulation results also show that interfacial damage dominates when the interfacial strength is less than 1 MPa, and the crack propagation rate in the end-hook steel fiber-modified SFRC is lower than that in a straight steel fiber-modified SFRC. Therefore, this research reveals that using end-hook steel fibers can improve the strength of the SFRC under low interfacial strength, but the ideal strength of the SFRC can be achieved only by using straight fibers when the interfacial strength between steel fibers and concrete is relatively high.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call