Abstract

Rechargeable batteries are porous electrochemical structures composed of secondary particles, which are aggregates of single crystal primary particles, pores, cracks, and processing-induced phases and features. The underlying meso and microstructural topology, including its size, size distribution, morphology and crystallographic orientation of each of the underlying phases impacts the delivered power and energy density. While it is clear that the component with the lowest efficiency will be the bottleneck to performance of the overall device, the understanding of the fundamentals associated to the different electrochemical and chemomechanical interactions of the underlying phases remains unclear. In this paper we will discuss the meso and microstructural limitations associated to porous cathode electrodes, and will outline strategies to tune the response of primary and secondary particle configurations for high power or energy density applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.