Abstract
The Navier–Stokes flow inside an evaporating sessile droplet is studied in the present paper, using sophisticated meshfree numerical methods for the computation of the flow field. This problem relates to numerous modern technological applications, and has attracted several analytical and numerical investigations that expanded our knowledge on the internal microflow during droplet evaporation. Two meshless point collocation methods are applied here to this problem and used for flow computations and for comparison with analytical and more traditional numerical solutions. Particular emphasis is placed on the implementation of the velocity-correction method within the meshless procedure, ensuring the continuity equation with increased precision. The Moving Least Squares (MLS) and the Radial Basis Function (RBF) approximations are employed for the construction of the shape functions, in conjunction with the general framework of the Point Collocation Method (MPC). An augmented linear system for imposing the coupled boundary conditions that apply at the liquid–gas interface, especially the zero shear-stress boundary condition at the interface, is presented. Computations are obtained for regular, Type-I embedded nodal distributions, stressing the positivity conditions that make the matrix of the system stable and convergent. Low Reynolds number (Stokes regime), and elevated Reynolds number (Navier–Stokes regime) conditions have been studied and the solutions are compared to those of analytical and traditional CFD methods. The meshless implementation has shown a relative ease of application, compared to traditional mesh-based methods, and high convergence rate and accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.