Abstract

A geometrically nonlinear analysis of carbon nanotube reinforced functionally graded (CNTR-FG) composite laminated plates is presented. Single-walled carbon nanotubes (SWCNTs) are selected as reinforcement and the effective material properties of CNTR-FG plates are assumed to be graded through the thickness direction in each layer. The two-dimensional displacement fields of the plates are approximated by a set of meshless kernel particle functions. For the purpose of eliminating shear locking, a stabilized conforming nodal integration scheme is employed to evaluate the system bending stiffness, and the membrane and shear terms are calculated by the direct nodal integration method. Parametric studies are conducted to investigate the effect of various types of CNT distribution, CNT volume fraction, plate aspect ratio and boundary conditions on the nonlinear responses of CNTR-FG laminated plates. Moreover, the effects of the number of layers and lamination angle are also investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call