Abstract

In this paper, efficient and simple algorithms based on Levin’s quadrature theory and our earlier work involving local radial basis function (RBF) and Chebyshev differentiation matrices, are adopted for numerical solution of one-dimensional highly oscillatory Fredholm integral equations. This work is focused on the comparative performance of local RBF meshless and pseudospectral procedures. We have tested the proposed methods on phase functions with and without stationary phase point(s), both on uniform and Chebyshev grid points. The proposed procedures are shown accurate and efficient, and therefore provide a reliable platform for the numerical solution of integral equations. From the numerical results, we draw some conclusions about accuracy, efficiency and robustness of the proposed approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.