Abstract
Meshless collocation methods for the numerical solutions of PDEs are increasingly adopted due to their advantages including efficiency and flexibility, and radial basis functions are popularly employed to represent the solutions of PDEs. Motivated by the advantages of ridge basis function representation of a given function, such as the connection to neural network, fast convergence as the number of terms is increased, better approximation effects and various applications in engineering problems, a meshless method is developed based on the collocation method and ridge basis function interpolation. This method is a truly meshless technique without mesh discretization: it neither needs the computation of integrals, nor requires a partition of the region and its boundary. Moreover, the method is applied to elliptic equations to examine its appropriateness, numerical results are compared to that obtained from other (meshless) methods, and influence factors of accuracy for numerical solutions are analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.