Abstract

A rotating Timoshenko beam free vibration problem is solved using the meshless local Petrov-Galerkin method. A locking-free shape function formulation is introduced with an improved radial basis function interpolation and the governing differential equations of the Timoshenko beam are used instead of the alternative formulation used by Cho and Atluri (2001). The locking-free approximation overcomes the problem of ill conditioning associated with the normal approximation. The radial basis functions satisfy the Kronercker delta property and make it easier to apply the essential boundary conditions. The mass matrix and the stiffness matrix are derived for the meshless local Petrov-Galerkin method. Results are validated for the fixed-free boundary condition with published literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.