Abstract

In this paper, the Galerkin boundary node method (GBNM) is developed for the solution of stationary Stokes problems in two dimensions. The GBNM is a boundary only meshless method that combines a variational form of boundary integral formulations for governing equations with the moving least-squares (MLS) approximations for construction of the trial and test functions. Boundary conditions in this approach are included into the variational form, thus they can be applied directly and easily despite the MLS shape functions lack the property of a delta function. Besides, the GBNM keeps the symmetry and positive definiteness of the variational problems. Convergence analysis results of both the velocity and the pressure are given. Some selected numerical tests are also presented to demonstrate the efficiency of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.