Abstract

We present a method to decompose an arbitrary 3D piecewise linear complex (PLC) into a constrained Delaunay tetrahedralization (CDT). It successfully resolves the problem of non-existence of a CDT by updating the input PLC into another PLC which is topologically and geometrically equivalent to the original one and does have a CDT. Based on a strong CDT existence condition, the redefinition is done by a segment splitting and vertex perturbation. Once the CDT exists, a practically fast cavity retetrahedralization algorithm recovers the missing facets. This method has been implemented and tested through various examples. In practice, it behaves rather robust and efficient for relatively complicated 3D domains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call