Abstract
This paper explores the feasibility of using the coupled smooth particle hydrodynamics–finite element method (SPH–FEM) to study the gear rack and meshing impact problem. Firstly, a numerical model containing both SPH and FEM units is established, and its accuracy is verified. Then, the principle of gear rack meshing impact is analyzed from the perspective of impact dynamics theory, and the formula of maximum meshing impact force is derived. Finally, the meshing impact process of the rack and pinion is simulated using the coupled SPH–FEM method, and experiments are designed to verify it. The analysis results show that the SPH–FEM coupling method can simulate the meshing impact behavior of the gear mechanism more accurately. On the other hand, the severity of the impact in each operating section was obtained. It is also found that the impact stress has reached the material's tensile limit, revealing the mechanism of tooth surface wear caused by the impact. The results of the study provide a choice of research methods for gear mechanism meshing impact and also provide some reference for gear rack tooth shape optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.