Abstract

Effectively representing Medical Subject Headings (MeSH) headings (terms) such as disease and drug as discriminative vectors could greatly improve the performance of downstream computational prediction models. However, these terms are often abstract and difficult to quantify. In this paper, we converted the MeSH tree structure into a relationship network and applied several graph embedding algorithms on it to represent these terms. Specifically, the relationship network consisting of nodes (MeSH headings) and edges (relationships), which can be constructed by the tree num. Then, five graph embedding algorithms including DeepWalk, LINE, SDNE, LAP and HOPE were implemented on the relationship network to represent MeSH headings as vectors. In order to evaluate the performance of the proposed methods, we carried out the node classification and relationship prediction tasks. The results show that the MeSH headings characterized by graph embedding algorithms can not only be treated as an independent carrier for representation, but also can be utilized as additional information to enhance the representation ability of vectors. Thus, it can serve as an input and continue to play a significant role in any computational models related to disease, drug, microbe, etc. Besides, our method holds great hope to inspire relevant researchers to study the representation of terms in this network perspective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.