Abstract
After it is shown that the classical five-point mesh-centered finite difference scheme can be derived from a low-order nodal finite element scheme by using nonstandard quadrature formulae, higher-order block mesh-centered finite difference schemes for second-order elliptic problems are derived from higher-order nodal finite elements with nonstandard quadrature formulae as before, combined to a procedure known as “transverse integration.” Numerical experiments with uniform and nonuniform meshes and different types of boundary conditions confirm the theoretical predictions, in discrete as well as continuous norms. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 439–465, 1998
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.