Abstract
Gear tooth deviations are the main excitation sources for gear dynamic responses. However, it is seldom considered in the analytical mesh stiffness model except for some computational analysis like finite element method. To make up this gap, a general analytical mesh stiffness model is proposed in this paper to include the effect of the gear tooth errors. This proposed model establishes the relationship between the gear tooth errors and the total mesh stiffness, load sharing among different tooth pairs in mesh and loaded static transmission errors (LSTE). It is suitable for not only the gear pairs with low contact ratio (LCR), but also the gear pairs with high contact ratio (HCR). Two spur gear pair models, namely one with LCR between 1 and 2 and the other one with HCR between 2 and 3, are used to demonstrate the effectiveness of the proposed mesh stiffness model. Influences of the TPM, applied torque and gear tooth root crack on the mesh stiffness, load sharing and loaded static transmission errors are also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.