Abstract

Multi-layered stacks are commonly used in microelectronic packaging. Traditionally, these systems are designed using linear-elastic analysis either with analytical solutions or finite element method. Linear-elastic analysis for layered structures yields very conservative results due to stress singularity at the free edge. In this paper, it is shown that a damage mechanics based nonlinear analysis not just leads to a more realistic analysis but also provides more accurate stress distribution. In this paper these two approaches are compared. Moreover, mesh sensitivity of the finite element analysis in stack problems is studied. It is shown that the closed form and elastic finite element analyses can only be used for preliminary studies and elastic finite element method is highly mesh sensitive for this problem. In elastic analysis the stress singularity at the free edge makes mesh selection very difficult. Even when asymptotic analysis is used at the free edge, the results are very conservative compared to an inelastic analysis. Rate sensitive inelastic analysis does not suffer from the stress singularity and mesh sensitivity problems encountered in elastic analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.