Abstract

The generation of detailed three dimensional meshes for the simulation of groundwater flow in thin layered domains is crucial to capture important properties of the underlying domains and to reach a satisfying accuracy. At the same time, this level of detail poses high demands both on suitable hardware and numerical solver efficiency. Parallel multigrid methods have been shown to exhibit near optimal weak scalability for massively parallel computations of density driven flow. A fully automated parameterized algorithm for prism based meshing of coarse grids from height data of individual layers is presented. Special structures like pinch outs of individual layers are preserved. The resulting grid is used as a starting point for parallel mesh and hierarchy creation through interweaved projected refinement and redistribution. Efficiency and applicability of the proposed approach are demonstrated for a parallel multigrid based simulation of a realistic sample problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.