Abstract

While many issues affect the composition and quantity of the nuclear source term, one significant factor is the existence of aerosols. These aerosols, found in the containment structure and in the primary reactor vessel, are usually simulated with the assumption that they are spatially homogeneous. We describe here new investigations of the applications of the Direct Simulation Monte Carlo method and a mesh-free technique to spatially inhomogeneous aerosol evolution in a number of nonspherical and complex geometries. Deposition, coagulation, and condensation aerosol processes are included, and results are reported for a sphere, ellipsoid, torus, elliptical cylinder, cuboid, and a spherical geometry containing an internal obstruction. Our progress here is a precursor to construction of an MCNP-like code for simulating aerosol evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.