Abstract

This paper considers a nudging-based scheme for data assimilation for the two-dimensional (2D) Navier-Stokes equations (NSE) with periodic boundary conditions and studies the synchronization of the signal produced by this algorithm with the true signal, to which the observations correspond, in all higher-order Sobolev topologies. This work complements previous results in the literature where conditions were identified under which synchronization is guaranteed either with respect to only the $H^1$--topology, in the case of general observables, or to the analytic Gevrey topology, in the case of spectral observables. To accommodate the property of synchronization in the stronger topologies, the framework of general interpolant observable operators, originally introduced by Azouani, Olson, and Titi, is expanded to a far richer class of operators. A significant effort is dedicated to the development of this more expanded framework, specifically, their basic approximation properties, the identification of subclasses of such operators relevant to obtaining synchronization, as well as the detailed relation between the structure of these operators and the system regarding the syncrhonization property. One of the main features of this framework is its "mesh-free" aspect, which allows the observational data itself to dictate the subdivision of the domain. Lastly, estimates for the radius of the absorbing ball of the 2D NSE in all higher-order Sobolev norms are obtained, thus properly generalizing previously known bounds; such estimates are required for establishing the synchronization property of the algorithm in the higher-order topologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.