Abstract

BackgroundTissue adhesives are a feasible option to fix a hernia repair mesh, avoiding tissue trauma of suture fixation. Classically, they are applied in the form of a drop, although novel applications such as spray are emerging. This study compares the use of a new experimental cyanoacrylate (n-butyl) in the form of a spray or drops. Materials and methodsThree study groups of New Zealand White rabbits were established (n = 6 each) according to the method used to fix a 5 × 3 cm polypropylene mesh in a partial abdominal wall defect model: control group (polypropylene stitches), adhesive drops group, and adhesive spray group. Morphological, immunohistochemical, and biomechanical strength studies were performed at 14 d postimplant. Collagen 1/3 gene ratio was determined by quantitative reverse transcription polymerase chain reaction. ResultsIn the drops group, the adhesive obstructed the mesh pores and prevented tissue infiltration at the points of application. When the adhesive was applied as a spray, although more numerous, adhesive deposits were smaller and allowed for better host tissue infiltration into the mesh. The inflammatory response was similar in the adhesive groups and more intense than in the control group. Collagen 1/3 mRNA ratio was significantly higher in the spray than the control group. The mechanical resistance of the meshes was similar in all three groups. ConclusionsThe application of the cyanoacrylate adhesive in the form of spray to fix polypropylene meshes in an animal model had a similar inflammatory response compared with droplet application. Neither application impacted the mechanical strength of the repaired area. An increased in collagen 1/3 ratio was found with cyanoacrylate spray compared with suture, and future studies should focus on this pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.