Abstract

Analysis of impurity in powder samples has been made by using metal-assisted laser-induced plasma spectroscopy utilizing a pulsed CO2 laser. Various powders including food powder, supplement powder, baby powder, and medicine powder were employed as sample materials. Experimentally, the powder sample was tightly put in a hole made on a metal plate and a metal mesh was placed on the powder surface. A pulse CO2 laser (10.6 μm, 1500 mJ) was irradiated on the powder surface passing through the metal mesh. Luminous plasma was induced by mesh just above the mesh when a part of laser energy attacked the mesh. The other part of laser energy impinged the powders and ablated fine particles of powder to the plasma to be atomized and excited. Identification and analysis of elements in powder were successfully conducted. A linear calibration curve of Cu in baby powder has been demonstrated with an intercept zero, certifying that the present technique was a high possibility to be employed for semi-quantitative analysis of elements in powder material. It was proved that by applying the present technique and employing a condensation technique, the detection sensitivity of Cr impurity in the powder sample increased about twenty times compared to the case without condensation. The limit of detection of Cr in rice powder sample was 25 mg/kg. The proposed method was very convenient for the identification and analysis of elements in the powder sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.