Abstract
Systemic hypoxia produces a rapid microvascular inflammatory response characterized by increased reactive oxygen species (ROS) levels, leukocyte-endothelial adherence and emigration, and increased vascular permeability. The lipid inflammatory mediator leukotriene B(4) (LTB(4)) is involved in the early hypoxia-induced responses (ROS generation and leukocyte adherence). Whether other lipid inflammatory mediators participate in this phenomenon is not known. The objective of these experiments was to study the role of platelet-activating factor (PAF) in the microvascular inflammatory response to hypoxia and its potential interactions with LTB(4) in this response. Intravital microscopy was used to examine mesenteric venules of anesthetized rats. We found that WEB-2086, a PAF receptor antagonist, completely prevented the increase in ROS levels and leukocyte adherence during a brief reduction in inspired Po(2) to anesthetized rats; administration of either WEB-2086 or the LTB(4) antagonist LTB(4)-DMA attenuated leukocyte emigration and the increase in vascular permeability to the same extent during prolonged systemic hypoxia in conscious rats. Furthermore, no additive effect was observed in either response when both antagonists were administered simultaneously. This study demonstrates a role for PAF in the rapid microvascular inflammatory response to hypoxia, as well as contributions of PAF and LTB(4) to the slowly developing responses observed during sustained hypoxia. The incomplete blockade of the hypoxia-induced increases in vascular permeability and leukocyte emigration by combined administration of both antagonists indicates that factors in addition to LTB(4) and PAF participate in these phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of applied physiology (Bethesda, Md. : 1985)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.