Abstract
Neuroendocrine tumors of the small intestine (SI-NETs) often develop lymph node metastasis (LNM)-induced mesenteric fibrosis (MF). MF can cause intestinal obstruction as well as ischemia and render surgical resection technically challenging. The underlying pathomechanisms of MF are still not well understood. We examined mesenteric LNM and the surrounding stroma compartment from 24 SI-NET patients, including 11 with in situ presentation of strong MF (MF+) and 13 without MF (MF-). Differential gene expression was assessed with the HTG EdgeSeq Oncology Biomarker Panel comparing MF+ with MF- within LNM and paired stromal samples, respectively. Most interesting differentially expressed genes were validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in combination with validation of associated protein levels utilizing immunohistochemistry (IHC) staining of MF+ and MF- formalin-fixed, paraffin-embedded (FFPE) patient samples. Overall, 14 genes measured with a 2549-gene expression panel were differentially expressed in MF+ patients compared to MF-. Of those, nine were differentially expressed genes in LNM and five genes in the stromal tissue (>2-fold change, p < .05). The top hits included increased COMP and COL11A1 expression in the stroma of MF+ patients compared to MF-, as well as decreased HMGA2, COL6A6, and SLC22A3 expression in LNM of MF+ patients compared to LNM of MF- patients. RT-qPCR confirmed high levels of COMP and COL11A1 in stroma samples of MF+ compared to MF- patients. IHC staining confirmed the enrichment of α-smooth muscle actin-positive fibrosis in MF+ compared to MF- patients with corresponding increase of COMP-expressing stromal cells in MF+. Since COMP is associated with the known driver for fibrosis development transforming growth factor beta and with a cancer-associated fibroblasts enriched environment, it seems to be a promising new target for MF research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.