Abstract

The present study investigated whether pregnancy and circulatory ovarian hormones increase the sensitivity of the mesenteric artery to calcitonin gene-related peptide (CGRP)-induced relaxation and possible mechanisms involved in this process. Mesenteric arteries from young adult male rats or female rats (during estrous cycle, after ovariectomy, at Day 20 of gestation, or Postpartum Day 2) were isolated, and the responsiveness of the vessels to CGRP was examined with a small vessel myograph. The CGRP (10(-10) to 10(-7) M) produced a concentration-dependent relaxation of norepinephrine-induced contractions in mesenteric arteries of all groups. Arterial relaxation sensitivity to CGRP was significantly (P < 0.05) greater in female rats compared with male rats. Pregnancy increased the sensitivity to CGRP significantly (P < 0.05) compared to ovariectomized and Postpartum Day 2 rats. In pregnant rats, CGRP-receptor antagonist, CGRP(8-37), inhibited the relaxation responses produced by CGRP. The CGRP-induced relaxation was not affected by N(G)-nitro-l-arginine methyl ester (nitric oxide inhibitor, 10(-4) M) but was significantly (P < 0.05) attenuated by an inhibitor of guanylate cyclase (1H-[1 , 2 , 4 ]oxadizaolo[4 , 3 -a]quinoxalin-1-one, 10(-5) M). Relaxation responses of CGRP on mesenteric arteries were blocked (P < 0.05) by a cAMP-dependent protein kinase A inhibitor, Rp-cAMPs (10(-5) M). The CGRP-induced vasorelaxation was significantly (P < 0.05) attenuated by calcium-dependent (tetraethylammonium, 10(-3) M), but not ATP-sensitive (glybenclamide, 10(-5) M), potassium channel blocker. Therefore, the results of the present study suggest that mesenteric vascular sensitivity to CGRP is higher during pregnancy and that cAMP, cGMP, and calcium-dependent potassium channels appear to be involved. Therefore, we propose that CGRP-mediated vasodilation may be important to maintain vascular adaptations during pregnancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.