Abstract

Over the past decades, substantial advances in neonatal medical care have increased the survival of extremely premature infants. However, there continues to be significant morbidity associated with preterm birth with common complications including bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), neuronal injury such as intraventricular hemorrhage (IVH) or hypoxic ischemic encephalopathy (HIE), as well as retinopathy of prematurity (ROP). Common developmental immune and inflammatory pathways underlie the pathophysiology of such complications providing the opportunity for multisystem therapeutic approaches. To date, no single therapy has proven to be effective enough to prevent or treat the sequelae of prematurity. In the past decade mesenchymal stem/stromal cell (MSC)-based therapeutic approaches have shown promising results in numerous experimental models of neonatal diseases. It is now accepted that the therapeutic potential of MSCs is comprised of their secretome, and several studies have recognized the small extracellular vesicles (sEVs) as the paracrine vector. Herein, we review the current literature on the MSC-EVs as potential therapeutic agents in neonatal diseases and comment on the progress and challenges of their translation to the clinical setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.