Abstract

The immune suppressive and anti-inflammatory capabilities of bone marrow-derived mesenchymal stromal cells (MSCs) represent an innovative new tool in regenerative medicine and immune regulation. The potent immune suppressive ability of MSC over T cells, dendritic cells, and natural killer cells has been extensively characterized, however, the effect of MSC on B cell function has not yet been clarified. In this study, the direct effect of MSC on peripheral blood B cell function is defined and the mechanism utilized by MSC in enhancing B cell survival in vitro identified. Human MSC supported the activation, proliferation, and survival of purified CD19(+) B cells through a cell contact-dependent mechanism. These effects were not mediated through B cell activating factor or notch signaling. However, cell contact between MSC and B cells resulted in increased production of vascular endothelial growth factor (VEGF) by MSC facilitating AKT phosphorylation within the B cell and inhibiting caspase 3-mediated apoptosis. Blocking studies demonstrated that this cell contact-dependent effect was not dependent on signaling through CXCR4-CXCL12 or through the epidermal growth factor receptor (EGFR). These results suggest that direct cell contact between MSC and B cells supports B cell viability and function, suggesting that MSC may not represent a suitable therapy for B cell-mediated disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.