Abstract

BackgroundHyperactivation of innate immunity has been implicated in the etiology of mood disorders, including major depressive disorder (MDD). Mesenchymal stromal cells (MSCs) have demonstrated potent immunomodulatory capabilities in the context of chronic inflammatory disease and injury but have yet to be evaluated in stress-based preclinical models of MDD. We sought to test the ability of intravenous MSCs to modulate innate immune activation and behavioral patterns associated with repeated social defeat (RSD). MethodsMurine RSD-induced innate immune activation as well as depressive and anxiety-like behaviors were assessed in unstressed, RSD, and RSD + human MSC groups. Biodistribution and fate studies were performed to inform potential mechanisms of action. ResultsMSCs reduced stress-induced circulating proinflammatory cytokines, monocytes, neuroinflammation, and depressive and anxiety-like behaviors. Biodistribution analyses indicated that infused MSCs distributed within peripheral organs without homing to the brain. Murine neutrophils targeted MSCs in the lungs within hours of administration. MSCs and recipient neutrophils were cleared by recipient macrophages promoting a switch toward a regulatory phenotype and systemic resolution of inflammation. ConclusionsPeripheral delivery of MSCs modulates central nervous system inflammatory processes and aberrant behavioral patterns in a stress-based rodent model of MDD and anxiety. Recent studies suggest that host immune cell–mediated phagocytosis of MSCs in vivo can trigger an immunomodulatory cascade, resulting in resolution of inflammation. Our data suggest that similar mechanisms may protect distal organs, including the brain, from systemic, stress-induced proinflammatory spikes and may uncover unexpected targets in the periphery for novel or adjunct treatment for a subset of patients with MDD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.