Abstract

BackgroundIslet dysfunction and destruction are the common cause for both type 1 and type 2 diabetes mellitus (T2DM). The islets of Langerhans are highly vascularized miniorgans, and preserving the structural integrity and full function of the microvascular endothelium is vital for protecting the islets from the infiltration of immune cells and secondary inflammatory attack. Mesenchymal stromal cell (MSC)-based therapies have been proven to promote angiogenesis of the islets; however, the underlying mechanism for the protective role of MSCs in the islet endothelium is still vague.MethodsIn this study, we used MS-1, a murine islet microvascular endothelium cell line, and an MSC-MS1 transwell culturing system to investigate the protective mechanism of rat bone marrow-derived MSCs under oxidative stress in vitro. Cell apoptosis was detected by TUNEL staining, annexin V/PI flow cytometry analysis, and cleaved caspase 3 western blotting analysis. Endothelial cell activation was determined by expression of intercellular cell adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM), as well as eNOS phosphorylation/activation. The changes of VCAM-1, eNOS, and the β-catenin expression were also tested in the isolated islets of T2DM rats infused with MSCs.ResultsWe observed that treating MS-1 cells with H2O2 triggered significant apoptosis, induction of VCAM expression, and reduction of eNOS phosphorylation. Importantly, coculturing MS-1 cells with MSCs prevented oxidative stress-induced apoptosis, eNOS inhibition, and VCAM elevation in MS-1 cells. Similar changes in VCAM-1 and eNOS phosphorylation could also be observed in the islets isolated from T2DM rats infused with MSCs. Moreover, MSCs cocultured with MS-1 in vitro or their administration in vivo could both result in an increase of β-catenin, which suggested activation of the β-catenin-dependent Wnt signaling pathway. In MS-1 cells, activation of the β-catenin-dependent Wnt signaling pathway partially mediated the protective effects of MSCs against H2O2-induced apoptosis and eNOS inhibition. Furthermore, MSCs produced a significant amount of Wnt4 and Wnt5a. Although both Wnt4 and Wnt5a participated in the interaction between MSCs and MS-1 cells, Wnt4 exhibited a protective role while Wnt5a seemed to show a destructive role in MS-1 cells.ConclusionsOur observations provide evidence that the orchestration of the MSC-secreted Wnts could promote the survival and improve the endothelial function of the injured islet endothelium via activating the β-catenin-dependent Wnt signaling in target endothelial cells. This finding might inspire further in-vivo studies.

Highlights

  • Islet dysfunction and destruction are the common cause for both type 1 and type 2 diabetes mellitus (T2DM)

  • Oxidative stress-induced MS-1 cell injury was established by exogenous administration of 200 μmol/L H2O2 in cultured MS-1 cells

  • Impairment of endothelial function was observed by the reduction of endothelial nitric oxide synthase (eNOS) phosphorylation and increased expression of adhesion molecule vascular cell adhesion molecule (VCAM) (Fig. 1f )

Read more

Summary

Introduction

Islet dysfunction and destruction are the common cause for both type 1 and type 2 diabetes mellitus (T2DM). The islets of Langerhans are highly vascularized miniorgans, and preserving the structural integrity and full function of the microvascular endothelium is vital for protecting the islets from the infiltration of immune cells and secondary inflammatory attack. The islets are highly vascularized miniorgans, with their combined 1–2% of the pancreatic volume receiving 10–20% of the total pancreatic blood flow [3]. Because of this unique structure, the islets are able to respond rapidly to glucose and hormone fluctuations but are vulnerable to unfavorable stimuli such as oxidative stress. Considering the importance of islet microvascular endothelium, preserving its integrity and proper function might be a novel target in islet protection

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.