Abstract

Intervertebral disc (IVD) degeneration (IVDD) has become increasingly prevalent and is a common contributing factor to low back pain. Current treatment options are limited to either symptom management or surgery. A promising treatment option being explored is intradiscal administration of mesenchymal stromal cells (MSCs). However, there remains a gap in knowledge as to whether MSCs from different tissue sources have similar responses to the low pH microenvironment of the IVD and the possible mechanisms governing these responses. To study this, MSCs from three different tissue sources: adipose (adipose-derived mesenchymal stem cell), bone marrow (bone marrow mesenchymal stem cells), and amnion (amniotic membrane mesenchymal stem cell) were cultured at low pHs representative of IVDD. MSCs were assessed for survival, senescence, apoptosis, metabolic activity, and cytokine release profile. Additionally, western blot was utilized to assess acid sensing ion channel 1 and 3 expression. The results of this study indicated that MSC viability, cell proliferation, senescence, and metabolic activity is negatively affected by low pH and alters MSC cytokine production. This study also demonstrated that MSCs behavior is dependent on tissue source. Understanding how MSC behavior is altered by pH will allow further research aimed at increasing the efficacy of MSC therapy to promote in situ IVDtissue regeneration to combat IVDD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call