Abstract

Objective: Accumulating evidences suggest that cancer-associated fibroblasts are provided from bone-marrow-derived mesenchymal stem cells (BM-MSCs); however, little is known about the mechanism(s) by which BM-MSCs accelerate cancer aggressiveness. Methods: Gastric carcinoma (GC)-derived MKN-7 cells were cocultured with UE6E7T-12 BM-MSCs. The gene expression profile in MKN-7 cells was investigated by microarray analysis. Between two major types of GCs (intestinal- and diffuse-type), the expression of genes was detected by immunohistochemistry. Results: We found that direct attachment to UE6E7T-12 induced proliferation and cluster formation of MKN-7 cells. Coculture with UE6E7T-12 increased the population of CD133+ MKN-7 cells in vitro and coimplantation of these in mice resulted in subcutaneous tumors in vivo. The wingless-type MMTV integration site (WNT) family member 5A (WNT5A) and transforming growth factor-β (TGF-β)-induced (TGFBI) genes were found to be upregulated in MKN-7 cells directly attached to UE6E7T-12. Recruitment of CD271+ BM-MSC was detected preferentially in the stroma of the diffuse-type GC and this type of GC cell also showed frequent expression of WNT5A, TGF-β type I receptor and CD133. Conclusion: BM-MSC-mediated activations of the WNT and TGF-β signaling pathways were thought to provide advantageous microenvironments for cancer progression by supporting the reacquisition and maintenance of cancer stem cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.