Abstract

Many studies have demonstrated a reduced number and vasculogenic capacity of endothelial colony-forming cells (ECFCs) in diabetic patients. However, whether the vasculogenic capacity of ECFCs is recovered or not when combined with pericyte precursors, mesenchymal stem cells (MSCs), under hyperglycemic conditions has not been studied. Thus, we investigated the role of MSCs in ECFC-mediated vascular formation under high-glucose conditions. The ECFCs and MSCs were treated with normal glucose (5 mM; NG) or high glucose (30 mM; HG) for 7 days. The cell viability, proliferation, migration, and tube formation of ECFCs were reduced in HG compared to NG. Interestingly, the ECFC+MSC combination after HG treatment formed tubular structures similar to NG-treated ECFCs+MSCs. An in vivo study using a diabetic mouse model revealed that the number of perfused vessels formed by HG-treated ECFCs+MSCs in diabetic mice was comparable with that of NG-treated ECFCs+MSCs in normal mice. Electron microscopy revealed that the ECFCs+MSCs formed pericyte-covered perfused blood vessels, while the ECFCs alone did not form perfused vessels when injected into the mice. Taken together, MSCs potentiate the vasculogenic capacity of ECFCs under hyperglycemic conditions, suggesting that the combined delivery of ECFCs+MSCs can be a promising strategy to build a functional microvascular network to repair vascular defects in diabetic ischemic regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.