Abstract

Background Stem cell therapy is a promising therapeutic modality for intervertebral disc degeneration (IDD). Oxidative stress is a vital contributor to the IDD; however, the definite role of oxidative stress in stem cell therapy for IDD remains obscure. The aim of this study was to determine the vital role of oxidative stress-related differentially expressed genes (OSRDEGs) in degenerative NPCs cocultured with mesenchymal stem cells (MSCs). Methods A series of bioinformatic methods were used to calculate the oxidative stress score and autophagy score, identify the OSRDEGs, conduct the function enrichment analysis and protein-protein interaction (PPI) analysis, build the relevant competing endogenous RNA (ceRNA) regulatory networks, and explore the potential association between oxidative stress and autophagy in degenerative NPCs cocultured with MSCs. Results There was a significantly different oxidative stress score between NPC/MSC samples and NPC samples (p < 0.05). Forty-one OSRDEGs were selected for the function enrichment and PPI analyses. Ten hub OSRDEGs were obtained according to the PPI score, including JUN, CAT, PTGS2, TLR4, FOS, APOE, EDN1, TXNRD1, LRRK2, and KLF2. The ceRNA regulatory network, which contained 17 DElncRNAs, 240 miRNAs, and 10 hub OSRDEGs, was constructed. Moreover, a significant relationship between the oxidative stress score and autophagy score was observed (p < 0.05), and 125 significantly related gene pairs were obtained (|r| > 0.90, p < 0.05). Conclusion Stem cell therapy might repair the degenerative IVD via reducing the oxidative stress through the ceRNA regulatory work and restoration of autophagy in degenerative NPCs. This research could provide new insights into the mechanism research of stem cell therapy for IDD and potential therapeutic targets in the IDD treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call