Abstract

The apoptosis of retinal ganglion cells leads to visual impairment and blindness in ocular neurodegenerative diseases, especially in diabetic retinopathy (DR). Mounting evidence suggests that oxidative stress contributes to the pathogenesis of DR. In the present study, we investigated whether bone mesenchymal stem cells (BMSCs) have protective ability to relieve hydrogen peroxide (H2O2)-induced injury on retinal ganglion cells in vitro. An immortalized retinal ganglion cells, RGC-5 cells, were exposed to anindicated concentration of H2O2 for 24h. Cell viability was analyzed by CCK-8 assay to find out a certain concentration to build H2O2 oxidative damage model. Morphological changes in RGC-5 cells were observed under optical microscope, and cell apoptosis was detected with Hoechst fluorescence staining. Then, BMSCs were co-cultured with RGC-5 cells in a transwell culture system for 24 h and 48h. Flow cytometry was performed to qualify the apoptosis rate of RGC-5 cells. Conditioned medium was collected for evaluation the inflammatory cytokines by ELISA. The content of intracellular malondialdehyde (MDA) and superoxide dismutase (SOD) was assayed by thiobarbituric acid and xanthine oxidase method, respectively. qRT-PCR and ELISA were conducted for analysis of the expression changes in brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), respectively. After H2O2 exposure, the morphological varieties were observed as cytoplasm shrinking and paramorphia together with nuclear gathering. Meanwhile, the apoptotic cells had hyperfluorescence with Hoechst 33258 staining. Co-culture with BMSCs significantly inhibited retinal cell death. It was found that BMSCs reduced H2O2-induced inflammatory factors IL-1β and TNF-α, down-regulated intracellular oxidant factor MDA, up-regulated intracellular antioxidant factor SOD, and increased neurotrophins BDNF and CNTF expression. BMSCs may enhance protective effect of RGC-5 cells in H2O2-induced damage through improving antioxidant capacity, inhibiting pro-inflammatory cytokine secretion, and promoting neurotrophin expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call