Abstract

Mesenchymal stem cells (MSCs) are, due to immunomodulatory characteristics, considered as novel agents in the treatment of immune-mediated acute liver failure. Although it is known that MSCs can regulate activation of T lymphocytes, their capacity to modulate function of neutrophils and natural killer T (NKT) cells, major interleukin (IL) 17-producing cells in acute liver injury, is still unknown. By using 2 well-established murine models of neutrophil and NKT cell-mediated acute liver failure (induced by carbon tetrachloride and α-galactoceramide), we investigated molecular and cellular mechanisms involved in MSC-mediated modulation of IL17 signaling during acute liver injury. Single intravenous injection of MSCs attenuate acute hepatitis and hepatotoxicity of NKT cells in a paracrine, indoleamine 2,3-dioxygenase (IDO)-dependent manner. Decreased levels of inflammatory IL17 and increased levels of immunosuppressive IL10 in serum, reduced number of interleukin 17-producing natural killer T (NKT17) cells, and increased presence of forkhead box P3 + IL10-producing natural killer T regulatory cells (NKTregs) were noticed in the injured livers of MSC-treated mice. MSCs did not significantly alter the total number of IL17-producing neutrophils, CD4+, and CD8 + T lymphocytes in the injured livers. Injection of mesenchymal stem cell-conditioned medium (MSC-CM) resulted with an increased NKTreg/NKT17 ratio in the liver and attenuated hepatitis in vivo and significantly reduced hepatotoxicity of NKT cells in vitro. This phenomenon was completely abrogated in the presence of IDO inhibitor, 1-methyltryptophan. In conclusion, the capacity of MSCs to alter NKT17/NKTreg ratio and suppress hepatotoxicity of NKT cells in an IDO-dependent manner may be used as a new therapeutic approach in IL17-driven liver inflammation. Liver Transplantation 23 1040-1050 2017 AASLD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.