Abstract

In this study we present a novel method for studying cellular traction force generation and mechanotransduction in the context of cardiac development. Rat hearts from three distinct stage of development (fetal, neonatal and adult) were isolated, decellularized and characterized via mechanical testing and protein compositional analysis. Stiffness increased ∼2-fold between fetal and neonatal time points but not between neonatal and adult. Composition of structural extracellular matrix (ECM) proteins was significantly different between all three developmental ages. ECM that was solubilized via pepsin digestion was cross-linked into polyacrylamide gels of varying stiffness and traction force microscopy was used to assess the ability of mesenchymal stem cells (MSCs) to generate traction stress against the substrates. The response to increasing stiffness was significantly different depending on the developmental age of the ECM. An investigation into early cardiac differentiation of MSCs demonstrated a dependence of the level of expression of early cardiac transcription factors on the composition of the complex ECM. In summary, this study found that complex ECM composition plays an important role in modulating a cell’s ability to generate traction stress against a substrate, which is a significant component of mechanotransductive signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.