Abstract

Background Regulatory T cell (Treg)/T helper (Th) 17 skewing is important in the development of acute respiratory distress syndrome (ARDS). Immunomodulatory effects of mesenchymal stem cell- (MSC-) secreted transforming growth factor- (TGF-) β1 on CD4+ T cells are environment-sensitive and lack discussion in hypoxic and inflammatory conditions. Methods Mouse splenic CD4+ T cells were precoated with anti-CD3 (5 μg/ml) and anti-CD28 (2 μg/ml) overnight. RAW264.7 cells were added as antigen-presenting cells (APCs). T cells with and without RAW264.7 cells were treated with various LPS concentrations of 0, 10, 100, and 1000 ng/ml or/and at hypoxia condition of 5% O2. Based on LPS (100 ng/ml) and hypoxia conditions (5% O2) as stimuli, MSCs were set as direct coculture or indirect coculture by transwell system. Anti-TGF-β1 neutralization antibody was added to explore the role of TGF-β1 among the soluble factors secreted by MSCs; miR-155 overexpression of CD4+ T cells was performed by transfection, and then, cells were added to the MSC-CD4+ T cell coculture system in hypoxic- and LPS-stimulated condition. After 48 hours, cells or supernatants were collected for detection of frequency of Treg and Th17 subsets, CD4+ T cell apoptosis and proliferation capacity assay by flow cytometry, secretion of INF-γ, IL-17A, IL-21, TGF-β1, and IL-10 by ELISA, and levels of miR-155, Rorc, Foxp3, and Ptpn2 mRNA expression of CD4+ T cells by RT-PCR. Results MSCs could restore skewed Treg/Th17 induced by LPS and hypoxia compared to groups without MSCs with increased secretion of TGF-β1, IL-10, and IL-17A (P < 0.05) and attenuate the increased expression of miR-155 in CD4+ T cells via cell-to-cell contact mechanism while TGF-β1 neutralization significantly inhibited the effects of MSCs restoring skewed Treg/Th17 and abolished its effect on miR-155 expression in CD4+ T cells. Conclusions These findings suggested miR-155 suppression of CD4+ T cells mediated MSC-secreted TGF-β1 modulating skewed Treg/Th17 induced by LPS-hypoxia challenge, providing evidence when proposing future T lymphocyte-targeted cell therapy in a specific condition.

Highlights

  • Regulatory T cell (Treg)/T helper (Th) 17 skewing is important in the development of acute respiratory distress syndrome (ARDS)

  • To figure out the impact of hypoxia, LPS, or combined stimulation on Treg and Th17 generation, CD4+ T cells with RAW264.7 cells added as antigenpresenting cells were cultured in vitro in the absence of or with LPS (10, 100, and 1000 ng/ml, respectively), hypoxia (5% O2), or combined stimulation for 48 hours

  • We found that TGFβ1 blocking by neutralization in mesenchymal stem cell- (MSC-)treated CD4+ T cells or blocking transforming growth factor- (TGF)-β1-mediated signaling by ALK5 inhibitor caused a reversal effect of MSCs on restoring Treg/Th17 imbalance induced by LPS and hypoxia challenge (P < 0:05, Figure 3), suggesting that MSCs improved Treg/Th17 exposed to LPS and hypoxia stimulation by increased TGF-β1 secretion

Read more

Summary

Introduction

Regulatory T cell (Treg)/T helper (Th) 17 skewing is important in the development of acute respiratory distress syndrome (ARDS). Immunomodulatory effects of mesenchymal stem cell- (MSC-) secreted transforming growth factor- (TGF) β1 on CD4+ T cells are environment-sensitive and lack discussion in hypoxic and inflammatory conditions. T cells with and without RAW264.7 cells were treated with various LPS concentrations of 0, 10, 100, and 1000 ng/ml or/and at hypoxia condition of 5% O2. Based on LPS (100 ng/ml) and hypoxia conditions (5% O2) as stimuli, MSCs were set as direct coculture or indirect coculture by transwell system. These findings suggested miR-155 suppression of CD4+ T cells mediated MSC-secreted TGF-β1 modulating skewed Treg/Th17 induced by LPS-hypoxia challenge, providing evidence when proposing future T lymphocyte-targeted cell therapy in a specific condition.

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.