Abstract

BackgroundA growing body of evidence suggests that stem cell-derived exosomal microRNAs (miRNAs) could be a promising cardioprotective therapy in the context of hypoxic conditions. The present study aims to explore how miRNA-144 (miR-144), a miRNA contained in bone marrow mesenchymal stem cell (MSC)-derived exosomes, exerts a cardioprotective effect on cardiomyocyte apoptosis in the context of hypoxic conditions and identify the underlying mechanisms.MethodsMSCs were cultured using the whole bone marrow adherent method. MSC-derived exosomes were isolated using the total exosome isolation reagent and confirmed by nanoparticle trafficking analysis as well as western blotting using TSG101 and CD63 as markers. The hypoxic growth conditions for the H9C2 cells were established using the AnaeroPack method. Treatment conditions tested included H9C2 cells pre-incubated with exosomes, transfected with miR-144 mimics or inhibitor, or treated with the PTEN inhibitor SF1670, all under hypoxic growth conditions. Cell apoptosis was determined by flow cytometry using 7-ADD and Annexin V together. The expression levels of the miRNAs were detected by real-time PCR, and the expression levels of AKT/p-AKT, Bcl-2, caspase-3, HIF-1α, PTEN, and Rac-1 were measured by both real-time PCR and western blotting.ResultsExosomes were readily internalized by H9C2 cells after co-incubation for 12 h. Exosome-mediated protection of H9C2 cells from apoptosis was accompanied by increasing levels of p-AKT. MiR-144 was found to be highly enriched in MSC-derived exosomes. Transfection of cells with a miR-144 inhibitor weakened exosome-mediated protection from apoptosis. Furthermore, treatment of cells grown in hypoxic conditions with miR-144 mimics resulted in decreased PTEN expression, increased p-AKT expression, and prevented H9C2 cell apoptosis, whereas treatment with a miR-144 inhibitor resulted in increased PTEN expression, decreased p-AKT expression, and enhanced H9C2 cell apoptosis in hypoxic conditions. We also validated that PTEN was a target of miR-144 by using luciferase reporter assay. Additionally, cells treated with SF1670, a PTEN-specific inhibitor, resulted in increased p-AKT expression and decreased H9C2 cell apoptosis.ConclusionsThese findings demonstrate that MSC-derived exosomes inhibit cell apoptotic injury in hypoxic conditions by delivering miR-144 to cells, where it targets the PTEN/AKT pathway. MSC-derived exosomes could be a promising therapeutic vehicle to facilitate delivery of miRNA therapies to ameliorate ischemic conditions.

Highlights

  • A growing body of evidence suggests that stem cell-derived exosomal microRNAs could be a promising cardioprotective therapy in the context of hypoxic conditions

  • Labeled exosomes, but not dye controls, were significantly taken by H9C2 cells (Fig. 1D, E). These findings demonstrated that mesenchymal stem cells (MSCs)-derived exosomes could be successfully collected, identified, and internalized into recipient H9C2 cells when co-cultured

  • We found in this study that miR-144 was highly abundant in MSC-derived exosomes, the expression of PTEN increased in hypoxic H9C2 cells pre-treated with exosomes

Read more

Summary

Introduction

A growing body of evidence suggests that stem cell-derived exosomal microRNAs (miRNAs) could be a promising cardioprotective therapy in the context of hypoxic conditions. The present study aims to explore how miRNA-144 (miR-144), a miRNA contained in bone marrow mesenchymal stem cell (MSC)-derived exosomes, exerts a cardioprotective effect on cardiomyocyte apoptosis in the context of hypoxic conditions and identify the underlying mechanisms. MSC-secreted exosomes have been reported to exert an anti-apoptotic effect on CMCs both in vivo and in vitro [5,6,7, 10] Exosomes exert their therapeutic effect by transferring lipids, proteins, and a variety of RNAs to recipient cardiac cells. RNAs transferred in MSC exosomes are of great interest, given that there are a variety of highly expressed microRNAs (miRNA, miR) contained in MSC-derived exosomes that may act in a paracrine manner to mediate cardiac repair [11,12,13]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.