Abstract
Backgroundα-cell dysregulation gives rise to fasting and postprandial hyperglycemia in type 2 diabetes mellitus(T2DM). Administration of Mesenchymal stem cells (MSCs) or their conditioned medium can improve islet function and enhance insulin secretion. However, studies showing the direct effect of MSCs on islet α-cell dysfunction are limited. MethodsIn this study, we used high-fat diet (HFD)-induced mice and α-cell line exposure to palmitate (PA) to determine the effects of bone marrow-derived MSC-conditioned medium (bmMSC-CM) on glucagon secretion. Plasma and supernatant glucagon were detected by enzyme-linked immunosorbent assay(ELISA). To investigate the potential signaling pathways, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), AKT and phosphorylated AKT(p-AKT) were assessed by Western blotting. ResultsIn vivo, bmMSC-CM infusion improved the glucose and insulin tolerance and protected against HFD-induced hyperglycemia and hyperglucagonemia. Meanwhile, bmMSC-CM infusion ameliorated HFD-induced islet hypertrophy and decreased α- and β-cell area. Consistently, in vitro, glucagon secretion from α-cells or primary islets was inhibited by bmMSC-CM, accompanied by reduction of intracellular PTEN expression and restoration of AKT signaling. Previous studies and the TargetScan database indicate that miR-181a and its target PTEN play vital roles in ameliorating α-cell dysfunction. We observed that miR-181a-5p was highly expressed in BM-MSCs but prominently lower in αTC1-6 cells. Overexpression or downregulation of miR-181a-5p respectively alleviated or aggravated glucagon secretion in αTC1-6 cells via the PTEN/AKT signaling pathway. ConclusionsOur observations suggest that MSC-derived miR-181a-5p mitigates glucagon secretion of α-cells by regulating PTEN/AKT signaling, which provides novel evidence demonstrating the potential for MSCs in treating T2DM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.