Abstract
The aim of the study was to construct small-diameter vascular grafts using canine mesenchymal stem cells (cMSCs) and a pulsatile flow bioreactor. cMSCs were isolated from canine bone marrow and expanded ex vivo. cMSCs were then seeded onto the luminal surface of decellularized arterial matrices, which were further cultured in a pulsatile flow bioreactor for four days. Immunohistochemical staining and scanning electron microscopy was performed to characterize the tissue-engineered blood vessels. cMSCs were successfully seeded onto the luminal surface of porcine decellularized matrices. After four-day culture in the pulsatile flow bioreactor, the cells were highly elongated and oriented to the flow direction. Immunohistochemistry demonstrated that the cells cultured under pulsatile flow expressed Von Willebrand factor, an endothelial cell marker. In conclusion, cMSCs seeded onto decellularized arterial matrices could differentiate into endothelial lineage after culturing in a pulsatile flow bioreactor, which provides a novel approach for tissue engineering of small-diameter blood vessels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.