Abstract

ObjectiveIn patients with osteoarthritis (OA), bone marrow lesions (BMLs) are intimately linked to disease progression. We hypothesized that aberrant multipotential stromal cell (also known as mesenchymal stem cell [MSC]) responses within bone tissue contributes to BML pathophysiology. The aim of this study was to investigate BML and non‐BML native subchondral bone MSCs for numeric, topographic, in vitro functional, and gene expression differences.MethodsEx vivo 3T magnetic resonance imaging (MRI) of the femoral heads of 20 patients with hip OA was performed. MRI‐determined BML and non‐BML regions were excised and enzymatically treated to extract cells and quantify MSCs using flow cytometry and colony‐forming unit–fibroblast (CFU‐F) assay. Immunohistochemical analysis was performed to determine in vivo CD271+ MSC distribution. Culture‐expanded CD271+ cells were analyzed for tripotentiality and gene expression.ResultsBML regions were associated with greater trabecular bone area and cartilage damage compared with non‐BML regions. The proportion of CD45−CD271+ MSCs was higher in BML regions compared with non‐BML regions (median difference 5.6‐fold; P < 0.001); the CFU‐F assay showed a similar trend (median difference 4.3‐fold; P = 0.013). Immunohistochemistry revealed CD271+ cell accumulation in bone adjacent to cartilage defects and areas of osteochondral angiogenesis. BML MSCs had lower proliferation and mineralization capacities in vitro and altered expression of TNFSF11/RANKL and CXCR4/stromal cell–derived factor 1 receptor. OA MSCs showed up‐regulated transcripts for CXCR1 and CCR6 compared with MSCs derived from healthy or osteoporotic bone.ConclusionThis study is the first to show numeric and topographic alterations in native MSCs in the diseased bone of patients with hip OA. Given the associated functional perturbation of MSCs, these data suggest that subchondral bone MSC manipulation may be an OA treatment target.

Highlights

  • bone marrow lesions (BMLs) regions were associated with greater trabecular bone area and cartilage damage

  • Given the associated functional perturbation of Mesenchymal stromal cell (MSC), these data suggest that subchondral bone MSC manipulation may be an OA treatment target

  • Established OA involves pathology in multiple tissues, but subchondral bone plays an important role in pathogenesis and symptomatology [2,3]

Read more

Summary

Objective

In patients with osteoarthritis (OA), bone marrow lesions (BMLs) are intimately linked to disease progression. We hypothesized that aberrant multipotential stromal cell ( known as mesenchymal stem cell [MSC]) responses within bone tissue contributes to BML pathophysiology. The aim of this study was to investigate BML and non-BML native subchondral bone MSCs for numeric, topographic, in vitro functional, and gene expression differences

Methods
Results
Conclusion
RESULTS
DISCUSSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.