Abstract

Krox-20, a C<sub>2</sub>H<sub>2</sub>-type zinc-finger transcription factor, plays an important role in rhombomere development. This study reveals that the Krox-20 null mutation impacts the development of mesencephalic trigeminal (Me5) neurons, a cell group traditionally thought to emerge from the mesencephalon. Based on cell counting studies, we show that Krox-20 null mutants have twice as many Me5 neurons relative to wildtypes at E15, but by birth have half the number of Me5 cells as wildtypes. TUNEL studies reveal a period of increased apoptosis from E17-P0 in mutants. The mutation does not result in differences in Me5 cell size, morphology, gene expression or peripheral projection patterns between genotypes, as demonstrated by retrograde tracing and Brn3a immunohistochemistry. The data suggest that Krox-20 regulates the period and extent of Me5 apoptosis, impacting the final number of Me5 neurons. The loss of Me5 in Krox-20<sup>–/–</sup> mice may highlight species-specific differences in the origin of these cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.