Abstract

In this study, we deal with a special form of the Brocard-Ramanujan equation, which is one of the interesting and still open problems of Diophantine analysis. We search for the positive integer solutions of the Brocard-Ramanujan equation for the case where the right-hand side is Mersenne numbers. By using the definition of Mersenne numbers, appropriate inequalities for the parameters of the equation, and the prime factorization of $n!$ we show that there is no positive integer solution to this equation. Thus, we obtain this interesting result demonstrating that the square of any Mersenne number can not be expressed as $n!+1$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.