Abstract
Meroterpenoid chrodrimanins, produced from Talaromyces sp. YO-2, are known to paralyze silkworm (Bombyx mori) larvae, but their target is unknown. We have investigated the actions of chrodrimanin B on ligand-gated ion channels of silkworm larval neurons using patch-clamp electrophysiology. Chrodrimanin B had no effect on membrane currents when tested alone at 1 μM. However, it completely blocked the γ-aminobutyric acid (GABA)-induced current and showed less pronounced actions on acetylcholine- and L-glutamate-induced currents, when delivered at 1 μM for 1 min prior to co-application with transmitter GABA. Thus, chrodrimanins were also tested on a wild-type isoform of the B. mori GABA receptor (GABAR) RDL using two-electrode voltage-clamp electrophysiology. Chrodrimanin B attenuated the peak current amplitude of the GABA response of RDL with an IC50 of 1.66 nM. The order of the GABAR-blocking potency of chrodrimanins B > D > A was in accordance with their reported insecticidal potency. Chrodrimanin B had no open channel blocking action when tested at 3 nM on the GABA response of RDL. Co-application with 3 nM chrodrimanin B shifted the GABA concentration response curve to a higher concentration and further increase of chrodrimanin B concentration to10 nM; it reduced maximum current amplitude of the GABA response, pointing to a high-affinity competitive action and a lower affinity non-competitive action. The A282S;T286V double mutation of RDL, which impairs the actions of fipronil, hardly affected the blocking action of chrodrimanin B, indicating a binding site of chrodrimanin B distinct from that of fipronil. Chrodrimanin B showed approximately 1,000-fold lower blocking action on human α1β2γ2 GABAR compared to RDL and thus is a selective blocker of insect GABARs.
Highlights
Chrodrimanins are meroterpenoids composed of sesquiterpenoid and polyketide moieties (Fig 1)
Given the powerful blocking action on γ-aminobutyric acid (GABA)-induced currents, we investigated chrodrimanin actions on a wild-type B. mori GABA receptor (GABAR) RDL expressed in Xenopus laevis oocytes using voltage-clamp electrophysiology
We report for the first time that chrodrimanin B exhibited much weaker blocking action on human α1β2γ2 GABAR compared to RDL, and may serve as a new lead for the design of safer insecticides
Summary
Chrodrimanins are meroterpenoids composed of sesquiterpenoid and polyketide moieties (Fig 1). They were first discovered in 1991 as metabolites of a fungal strain of Penicillium variabils and were found to have insecticidal and insect-repelling effects on Lepidoptera [1]. Chrodrimanins A–H with their paralyzing actions on silkworm larvae (Bombyx mori) were isolated from okara (waste residue from tofu production) that had been fermented with Talaromyces sp. We employed chrodrimanin B (Fig 1), the most insecticidal member of this family, to explore the mode of action in silkworm larvae. Given the powerful blocking action on γ-aminobutyric acid (GABA)-induced currents, we investigated chrodrimanin actions on a wild-type B. mori GABAR RDL expressed in Xenopus laevis oocytes using voltage-clamp electrophysiology. We investigated the effects of equivalent A282S;T286V mutations on the blocking action of chrodrimanin B
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.