Abstract

Meroterpenoid chrodrimanins, produced from Talaromyces sp. YO-2, are known to paralyze silkworm (Bombyx mori) larvae, but their target is unknown. We have investigated the actions of chrodrimanin B on ligand-gated ion channels of silkworm larval neurons using patch-clamp electrophysiology. Chrodrimanin B had no effect on membrane currents when tested alone at 1 μM. However, it completely blocked the γ-aminobutyric acid (GABA)-induced current and showed less pronounced actions on acetylcholine- and L-glutamate-induced currents, when delivered at 1 μM for 1 min prior to co-application with transmitter GABA. Thus, chrodrimanins were also tested on a wild-type isoform of the B. mori GABA receptor (GABAR) RDL using two-electrode voltage-clamp electrophysiology. Chrodrimanin B attenuated the peak current amplitude of the GABA response of RDL with an IC50 of 1.66 nM. The order of the GABAR-blocking potency of chrodrimanins B > D > A was in accordance with their reported insecticidal potency. Chrodrimanin B had no open channel blocking action when tested at 3 nM on the GABA response of RDL. Co-application with 3 nM chrodrimanin B shifted the GABA concentration response curve to a higher concentration and further increase of chrodrimanin B concentration to10 nM; it reduced maximum current amplitude of the GABA response, pointing to a high-affinity competitive action and a lower affinity non-competitive action. The A282S;T286V double mutation of RDL, which impairs the actions of fipronil, hardly affected the blocking action of chrodrimanin B, indicating a binding site of chrodrimanin B distinct from that of fipronil. Chrodrimanin B showed approximately 1,000-fold lower blocking action on human α1β2γ2 GABAR compared to RDL and thus is a selective blocker of insect GABARs.

Highlights

  • Chrodrimanins are meroterpenoids composed of sesquiterpenoid and polyketide moieties (Fig 1)

  • Given the powerful blocking action on γ-aminobutyric acid (GABA)-induced currents, we investigated chrodrimanin actions on a wild-type B. mori GABA receptor (GABAR) RDL expressed in Xenopus laevis oocytes using voltage-clamp electrophysiology

  • We report for the first time that chrodrimanin B exhibited much weaker blocking action on human α1β2γ2 GABAR compared to RDL, and may serve as a new lead for the design of safer insecticides

Read more

Summary

Introduction

Chrodrimanins are meroterpenoids composed of sesquiterpenoid and polyketide moieties (Fig 1). They were first discovered in 1991 as metabolites of a fungal strain of Penicillium variabils and were found to have insecticidal and insect-repelling effects on Lepidoptera [1]. Chrodrimanins A–H with their paralyzing actions on silkworm larvae (Bombyx mori) were isolated from okara (waste residue from tofu production) that had been fermented with Talaromyces sp. We employed chrodrimanin B (Fig 1), the most insecticidal member of this family, to explore the mode of action in silkworm larvae. Given the powerful blocking action on γ-aminobutyric acid (GABA)-induced currents, we investigated chrodrimanin actions on a wild-type B. mori GABAR RDL expressed in Xenopus laevis oocytes using voltage-clamp electrophysiology. We investigated the effects of equivalent A282S;T286V mutations on the blocking action of chrodrimanin B

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.