Abstract

Accurate chromosome segregation in mitosis is crucial to maintain a diploid chromosome number. A majority of cancer cells are aneuploid and chromosomally unstable, i.e. they tend to gain and lose chromosomes at each mitotic division. Chromosome mis-segregation can arise when cells progress through mitosis with mis-attached kinetochores. Merotelic kinetochore orientation, a type of mis-attachment in which a single kinetochore binds microtubules from two spindle poles rather than just one, can represent a particular threat for dividing cells, as: (i) it occurs frequently in early mitosis; (ii) it is not detected by the spindle assembly checkpoint (unlike other types of mis-attachments); (iii) it can lead to chromosome mis-segregation, and, hence, aneuploidy. A number of studies have recently started to unveil the cellular and molecular mechanisms involved in merotelic kinetochore formation and correction. Here, I review these studies and discuss the relevance of merotelic kinetochore orientation in cancer cell biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call