Abstract

We give an upper bound for the number of functionally independent meromorphic first integrals that a discrete dynamical system generated by an analytic map f can have in a neighborhood of one of its fixed points. This bound is obtained in terms of the resonances among the eigenvalues of the differential of f at this point. Our approach is inspired on similar Poincaré type results for ordinary differential equations. We also apply our results to several examples, some of them motivated by the study of several difference equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.