Abstract

Sheep in Australia experience periods with different feed supply causing them to gain and lose BW during the year. It is more efficient if ewes lose less BW during periods of poor nutrition and gain more BW during periods of good nutrition. We investigated whether BW loss during periods of poor nutrition and BW gain during periods of good nutrition are genetically different traits. We used BW measurements from 2,336 adult Merino ewes managed over 5 yr in a Mediterranean climate in Katanning, Australia. Body weight loss is the difference between 2 BW measured 42 d apart during mating, a period of poor nutrition. Body weight gain is the difference between 2 BW measured 131 d apart during a period of good nutrition between prelambing and weaning. We estimated variance compnents of BW change using 3 methods: 1) as a trait calculated by subtracting the first BW from the second, 2) multivariate analysis of BW traits, and 3) random regression analysis of BW. The h(2) and genetic correlations (rg) estimated using the multivariate analysis of BW and the BW change trait were very similar whereas the random regression analysis estimated lower heritabilities and more extreme negative genetic correlations between BW loss and gain. The multivariate model fitted the data better than random regression based on Akaike and Bayesian information criterion so we considered the results of the multivariate model to be more reliable. The heritability of BW loss (h(2) = 0.05-0.16) was smaller than that of BW gain (h(2) = 0.14-0.37). Body weight loss and gain can be bred for independently at 2 and 4 yr of age (rg = 0.03 and -0.04) whereas at 3 yr of age ewes that genetically lost more BW gained more BW (rg = -0.41). Body weight loss is genetically not the same trait at different ages (rg range 0.13-0.39). Body weight gain at age 3 yr is genetically the same trait at age 4 yr (rg = 0.99) but is different between age 2 yr and the older ages (rg = 0.53 and 0.51). These results suggest that as the ewes reach their mature BW, BW gain at different ages becomes the same trait. This does not apply to BW loss. We conclude that BW change could be included in breeding programs to breed adult Merino ewes that are more tolerant to variation in feed supply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.