Abstract

Heat transports estimated CTD data collected during the World Ocean Circulation Experiment (WOCE) along the January 1993 30°S hydrographic transect (A10) and the output from a numerical model show a mean heat transport of 0.40 and 0.55±0.24 PW (standard deviation), respectively. The model shows a large annual cycle in heat transport (more than 30% of the variance) with a maximum (minimum) heat transport in July (February) of 0.68 (0.41) PW. Using these data, a method is proposed and evaluated to calculate the heat transport from temperature data obtained from a trans-basin section of expendable bathythermographs (XBTs) profiles. In this method, salinity is estimated from Argo profiles and CTD casts for each XBT temperature observation using statistical relationships between temperature, latitude, longitude and salinity computed along constant-depth surfaces. Full-depth temperature/salinity profiles are obtained by extending the profiles to the bottom of the ocean using deep climatological data. The meridional transport is then determined by using the standard geostrophic method, applying NCEP-derived Ekman transports, and requiring that the salt flux through the Bering Straits be conserved. The results indicate that the methods described here can provide heat transport estimates with a maximum uncertainty of ±0.18 PW (1 PW=10 15 W). Most of this uncertainty is due to the climatology used to estimate the deep structure and issues related to not knowing the absolute velocity field and most especially characterizing barotropic motions. Nevertheless, when the methodology is applied to temperatures collected along 30°S (A10) and direct model integrations, the results are very promising. Results from the numerical model suggest that ageostrophic non-Ekman motions can contribute less than 0.05 PW to heat transport estimates in the South Atlantic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call