Abstract

Ring-diagram analysis, a local helioseismology technique, has proven to be very useful for studying solar subsurface velocity flows down to a depth of about 0.97 R☉. The depth range is determined by the modes used in this type of analysis, and thus depends on the size of the area analyzed. Extending the area allows us to detect lower spherical harmonic degree (l) modes which, at a constant frequency, penetrate deeper in the Sun. However, there is a compromise between the size of the area and the validity of the plane-wave approximation used by the technique. We present the results of applying the ring diagrams to 30° diameter areas over the solar surface in an attempt to reach deeper into the solar interior. Meridional flows for 25 consecutive Carrington rotations (1985-2009) are derived by applying this technique to Global Oscillation Network Group (GONG) and Michelson Doppler Imager (MDI) data. This covers a time span of almost 2 yr, starting at the beginning of 2002. The amplitude of the meridional flow shows a variation of the order of 5 m s-1 during this period. Our results indicate that the flows increase toward the interior of the Sun for the depth range studied. We find a 1 yr periodicity in the appearance of an equatorward meridional cell at high latitudes that coincides with maximum values of the solar inclination toward the Earth (B0 angle).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call